Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 16(12): e0259996, 2021.
Article in English | MEDLINE | ID: covidwho-1592627

ABSTRACT

OBJECTIVES: To evaluate (1) the relationship between heating, ventilation, and air conditioning (HVAC) systems and bioaerosol concentrations in hospital rooms, and (2) the effectiveness of laminar air flow (LAF) and high efficiency particulate air (HEPA) according to the indoor bioaerosol concentrations. METHODS: Databases of Embase, PubMed, Cochrane Library, MEDLINE, and Web of Science were searched from 1st January 2000 to 31st December 2020. Two reviewers independently extracted data and assessed the quality of the studies. The samples obtained from different areas of hospitals were grouped and described statistically. Furthermore, the meta-analysis of LAF and HEPA were performed using random-effects models. The methodological quality of the studies included in the meta-analysis was assessed using the checklist recommended by the Agency for Healthcare Research and Quality. RESULTS: The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3. Meanwhile, the indoor bacterial concentration of LAF systems decreased by 40.05 (95% CI: -55.52, -24.58) CFU/m3 compared to that of conventional HVAC systems. CONCLUSIONS: The HVAC systems in hospitals can effectively remove bioaerosols. Further, the use of HEPA filters is an effective option for areas that are under-ventilated and require additional protection. However, other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. LIMITATION OF STUDY: Although our study analysed the overall trend of indoor bioaerosols, the conclusions cannot be extrapolated to rare, hard-to-culture, and highly pathogenic species, as well as species complexes. These species require specific culture conditions or different sampling requirements. Investigating the effects of HVAC systems on these species via conventional culture counting methods is challenging and further analysis that includes combining molecular identification methods is necessary. STRENGTH OF THE STUDY: Our study was the first meta-analysis to evaluate the effect of HVAC systems on indoor bioaerosols through microbial incubation count. Our study demonstrated that HVAC systems could effectively reduce overall bioaerosol concentrations to maintain better indoor air quality. Moreover, our study provided further evidence that other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. PRACTICAL IMPLICATION: Our research showed that HEPA filters are more effective at removing bioaerosols in HVAC systems than the current LAF system. Therefore, instead of opting for the more costly LAF system, a filter with a higher filtration rate would be a better choice for indoor environments that require higher air quality; this is valuable for operating room construction and maintenance budget allocation.


Subject(s)
Air Conditioning/instrumentation , Air Pollution, Indoor/prevention & control , Environmental Monitoring/methods , Filtration/standards , Heating/instrumentation , Hospitals/standards , Ventilation/instrumentation , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Equipment and Supplies, Hospital , Humans
2.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Article in English | MEDLINE | ID: covidwho-1302821

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Subject(s)
Air Conditioning/instrumentation , Air Filters , Air Pollution, Indoor/prevention & control , Masks , SARS-CoV-2 , Aerosols , Equipment Design , Humans , United States
3.
Air Med J ; 40(1): 54-59, 2021.
Article in English | MEDLINE | ID: covidwho-1060089

ABSTRACT

OBJECTIVE: The aeromedical transport of coronavirus patients presents risks to clinicians and aircrew. Patient positioning and physical barriers may provide additional protection during flight. This paper describes airflow testing undertaken on fixed wing and rotary wing aeromedical aircraft. METHODS: Airflow testing was undertaken on a stationary Hawker Beechcraft B200C and Leonardo Augusta Westland 139. Airflow was simulated using a Trainer 101 (MSS Professional A/S, Odense Sø, Syddanmark, Denmark) Smoke machine. Different cabin configurations were used along with variations in heating, cooling, and ventilation systems. RESULTS: For the Hawker Beechcraft B200C, smoke generated within the forward section of the cabin was observed to fill the cabin to a fluid boundary located in-line with the forward edge of the cargo door. With the curtain closed, smoke was only observed to enter the cockpit in very small quantities. For the Leonardo AW139, smoke generated within the cabin was observed to expand to fill the cabin evenly before dissipating. With the curtain closed, smoke was observed to enter the cockpit only in small quantities CONCLUSION: The use of physical barriers in fixed wing and rotary wing aeromedical aircraft provides some protection to aircrew. Optimal positioning of the patient is on the aft stretcher on the Beechcraft B200C and on a laterally orientated stretcher on the AW139. The results provide a baseline for further investigation into methods to protect aircrew during the coronavirus pandemic.


Subject(s)
Air Ambulances , Air Conditioning/methods , Air Movements , COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Ventilation/methods , Air Conditioning/instrumentation , COVID-19/transmission , Humans , Ventilation/instrumentation
4.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(9): 1381-1384, 2020 Sep 10.
Article in Chinese | MEDLINE | ID: covidwho-881374

ABSTRACT

The central air conditioning ventilation system plays an important role in the air circulation of buildings such as centralized isolation medical observation points and general public buildings. In order to meet the requirements of COVID-19 epidemic prevention and control, Beijing Preventive Medicine Association organized Beijing CDC and other professional institutes to write up the group standard entitled "Technical specification for health risk investigation of central air conditioning ventilation system during the COVID-19 epidemic (T/BPMA 0006-2020)" . According to the particularity of central air conditioning ventilation system risk control during the outbreak of similar respiratory infectious diseases, based on current laws and regulations and the principle of scientific, practical, consistency and normative, 8 key points of risk investigations were summarized, which were the location of fresh air outlet, air conditioning mode, air return mode, air system, air distribution, fresh air volume, exhaust and air conditioner components. The contents, process, method, data analysis and conclusion of the investigation implementation were also defined and unified. It could standardize and guide institutions such as disease control and health supervision to carry out relevant risk managements, and provided solutions and technical supports for such major public health emergencies in city operations.


Subject(s)
Air Conditioning/adverse effects , Coronavirus Infections/prevention & control , Epidemics , Equipment Design/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Ventilation/instrumentation , Air Conditioning/instrumentation , Beijing/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , Risk Assessment
6.
Med Hypotheses ; 141: 109781, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-116780

ABSTRACT

The world is facing a pandemic of unseen proportions caused by a corona virus named SARS-CoV-2 with unprecedent worldwide measures being taken to tackle its contagion. Person-to-person transmission is accepted but WHO only considers aerosol transmission when procedures or support treatments that produce aerosol are performed. Transmission mechanisms are not fully understood and there is evidence for an airborne route to be considered, as the virus remains viable in aerosols for at least 3 h and that mask usage was the best intervention to prevent infection. Heating, Ventilation and Air Conditioning Systems (HVAC) are used as a primary infection disease control measure. However, if not correctly used, they may contribute to the transmission/spreading of airborne diseases as proposed in the past for SARS. The authors believe that airborne transmission is possible and that HVAC systems when not adequately used may contribute to the transmission of the virus, as suggested by descriptions from Japan, Germany, and the Diamond Princess Cruise Ship. Previous SARS outbreaks reported at Amoy Gardens, Emergency Rooms and Hotels, also suggested an airborne transmission. Further studies are warranted to confirm our hypotheses but the assumption of such way of transmission would cause a major shift in measures recommended to prevent infection such as the disseminated use of masks and structural changes to hospital and other facilities with HVAC systems.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Environment, Controlled , Pandemics , Pneumonia, Viral/transmission , Ventilation , Aerosols , Air Conditioning/adverse effects , Air Conditioning/instrumentation , Air Conditioning/methods , Air Pollution, Indoor , COVID-19 , Coronavirus Infections/prevention & control , Cross Infection/transmission , Equipment Contamination , Equipment Design , Equipment Failure , Fomites/virology , Heating/adverse effects , Heating/instrumentation , Heating/methods , Humans , Legionnaires' Disease/epidemiology , Legionnaires' Disease/transmission , Models, Biological , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Sanitary Engineering/instrumentation , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Sewage/virology , Ventilation/instrumentation , Ventilation/methods
SELECTION OF CITATIONS
SEARCH DETAIL